A new approach to numerical characterisation of wear particle surfaces in three-dimensions for wear study
نویسندگان
چکیده
In the wear and tear process of synovial joints, wear particles generated and released from articular cartilage within the joints have different surface topology and mechanical property. Three-dimensional (3D) particle images acquired using laser scanning confocal microscopy (LSCM) contain appropriate surface information for quantitatively characterizing the surface topology and changes to seek a further understanding of the wear process and wear features. This paper presents a new attempt on the 3D numerical characterisation of wear particle surfaces using the field and feature parameter sets which are defined in ISO/FDIS 25178-2. Based on the innovative pattern recognition capability, the feature parameters are, for the first time, employed for quantitative analysis of wear debris surface textures. Through performing parameter classification, ANOVA analysis and correlation analysis, typical changing trends of the surface transformation of the wear particles along with the severity of wear conditions and Osteoarthritis (OA) have been observed. Moreover, the feature parameters have shown a significant sensitivity with the wear particle surfaces texture evolution under OA development. A correlation analysis of the numerical analysis results of cartilage surface texture variations and that of their wear particles has been conducted in this study. Key surface descriptors have been determined. Further research is needed to verify the above outcomes using clinic samples.
منابع مشابه
Effect of Carbide Particle Size on the Microstructure, Mechanical properties, and Wear Behavior of HVOF-sprayed WC-17% Co Coatings
This study investigates the effect of carbide particle size on the microstructure, mechanical properties, and abrasive wear resistance of WC-17%Co HVOF-sprayed coatings. The characteristics of WC-1, WC-2, and WC-3 coatings with carbide sizes of 1 µm, 0.9 µm, and 0.5 µm, respectively, were also investigated. WC-1 coating experienced the maximum carbon loss of 42%, while WC-2 and WC-3 coatings un...
متن کاملInvestigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملInvestigation of the Slipping Wear based on the Rate of Entropy Generation
Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...
متن کاملبررسی اثر نوع فیلر بر سایش سه جزئی کامپوزیت دندانی
Statement of Problem: The relatively poor wear resistance of dental composite in stress bearing posterior situations has restricted wider clinical application of this restorative material. Purpose: The aim of this study was to evaluate the three body abrasive wear of a dental composite based on a new filler (leucite: KAl Si2O6) and to compare it with the wear resistance of a composite based on ...
متن کاملDelamination Wear Mechanism in Gray Cast Irons
An investigation of the friction and sliding wear of gray cast iron against chromium plated cast irons was carried out on a newly constructed reciprocating friction and wear tester. The tests were the first to be done on the test rig under dry conditions and at the speed of 170 cm/min, and variable loads of 20-260 N for a duration of 15 min. to 3 hours. The gray cast iron surfaces worn by a pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015